Break-Away Torque Calculation for 2 Gear Rotor Shafts

Below is an example calculation method for the "initial torque" which must be used by the driving machine to achieve dynamic rotation from a static condition. This is based on the gear rotor set coupled to the rotor of the driven machine. Both the "direction of rotation" and the "break-away torque of the driven rotor (compressor/generator)" must be known since the final friction strengths are dependent on the calculation for the gearing.

Calculation for 2 rotor shafts

<u>Shaft 2 – Driven Rotor</u>

Rotational force required for taking into account the driven machines break-away torque

$$F_{U_2} = 1000 \cdot \frac{M_{L2}}{R_2}$$

Net breaking force for driven rotor bearings derived from F_{U_2} and G_2

 $L_2 = F_{U_2} \pm G_{2_{[2]}}$

 G_2 is negative if force direction on driven rotor mesh is $up \uparrow (up mesh)$ G_2 is positive if force direction on driven rotor mesh is down \downarrow (down mesh)

Net Rotational Force to overcome bearing friction on driven rotor

26 Commerce Drive North Branford, CT 06471 www.artec-machine.com	Break-Away Torque Calculation for 2 Gear Rotor Shafts	Created: J. Amendola Date: 2003 Revision: Date:
	Type: Tech. Document	Page: 1 of 3

$$F_2 = \frac{L_2 \cdot \mu}{\frac{R_2}{r_2} \mp \mu}$$

 μ is positive if force direction on driven rotor mesh is up \uparrow (up mesh) μ is negative if force direction on driven rotor mesh is down \downarrow (down mesh)

Total driven rotor force

$$F_{U_{12}} = F_{U_2} + F_2_{[4]}$$

Shaft 1 – Driving Rotor

Force on driving rotor derived from F_u and G_1

$$L_1 = F_{u_{12}} \pm G_{1_{5}}$$

 G_1 is **positive** if force direction on driving rotor mesh is down \downarrow (up mesh) G_1 is **negative** if force direction on driving rotor mesh is up \uparrow (down mesh)

Total combined moment due to friction from both driving/driven Rotors

$$M_{R_{\rm i}} = \frac{L_{\rm i} \cdot \mu \cdot r_{\rm i}}{1000}$$
[6]

Total Break-Away Torque for this rotor set

$$M_{L_{zer}} = \frac{F_{U_{12}} \cdot R_1}{1000} + M_{R_1} (+ M_{L_1})$$
^[7]

- including the coupled machine

The driver is like a shaft rope coupled to the drive. Unlike the driven break-away torque, the driver break-away torque M_{L1} does not have any influence on the gearing. This is added to the total break-away torque of the gearing at the drive flange.

26 Commerce Drive North Branford, CT 06471 <u>www.artec-machine.com</u>	Break-Away Torque Calculation for 2 Gear Rotor Shafts	Created: J. Amendola Date: 2003 Revision: Date:
	Type: Tech. Document	Page: 2 of 3

EXAMPLE:

$$\begin{split} &M_{L_2} = 400 \text{ Nm} \text{ - assumed break-away torque of driven machine} \\ &G_2 = 5000 \text{ N} \text{ - wheel rotor weight} \\ &R_2 = 200 \text{ mm} \text{ - wheel pitch line radius} \\ &r_2 = 65 \text{ mm} \text{ - wheel journal radius} \\ &G_1 = 2000 \text{ N} \text{ - pinion rotor weight} \\ &R_1 = 140 \text{ mm} \text{ - pinion pitch line radius} \\ &r_1 = 45 \text{ mm} \text{ - pinion journal radius} \\ &\mu = 0.26 \text{ - friction factor} \end{split}$$

Shaft 2: Shaft 1:

 $F_{U_2} = 1000 \cdot \frac{400}{200} = 2000 \, \Uparrow \, Nm \ L_1 = 2234 \, \Downarrow \, +2000 \, \Downarrow = 4234 \, \Downarrow \, N$

$$L_2 = 2000 \text{ ft} -5000 \text{ Jt} = 3000 \text{ Jt} N M_R = \frac{4234 \cdot 0.26 \cdot 45}{1000} = 49.5N$$

$$F_2 = \frac{3000 \cdot 0.26}{\frac{200}{65} + 0.26} = 234N$$
$$M_{1_{set}} = \frac{2234 \cdot 140}{1000} + 49.5 = \underline{362.3Nm}$$

$$F_{U_{12}} = 2000 + 234 = 2234 \text{ ft } N$$

note: add M_{L1} to obtain the total drive train break away torque

26 Commerce Drive North Branford, CT 06471 www.artec-machine.com	Break-Away Torque Calculation for 2 Gear Rotor Shafts	Created: J. Amendola Date: 2003 Revision: Date:
	Type: Tech. Document	Page: 3 of 3