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ABSTRACT: 

A contact analysis algorithm based on linear programming is used for predicting the 
load distribution and transmission error characteristics of double helical gears. The analysis 
accounts for the axial shifting of the double helical pinion that enables the loads to be 
shared equally between the two halves of the double helical gear. Inclusion of the axial 
shifting of the pinion is shown to be crucial to the accurate detennination of the load 
distribution along the lines of contact The effect of the axial stiffness of couplings upon the 
amount of axial shift predicted for the pinion is presented. The effect on transmission error 
of stagger between the teeth of the two halves of a double helical gear shows that a suitable 
choice of stagger can minimize transmission error. 



INTRODUCTION 

This paper presents the development of an 
analytical method for evaluating the load distribution 
and transmission error in dou ble helical gears. The 
programming procedure proposed . by Conry and 
Seireg [1] for the analysis of elastic bodies in contact 
forms the basis of the method developed for the 
solution of this problem. This procedure has been 
successfully utilized in the past for developing the 
Load Distribution Program (LOP) [2] for the 
analysis of load distribution and transmission error 
in spur and helical gears. The actual solution of the 
contact problem in double helical gears is obtained 
by using the simplex type procedure proposed by 
Vijayakar, et al. [3], for the solution of multibody 
frictional contact problems. 

In this paper, the two helical gears of opposite 
hands of the helix angle constituting the double 
helical gear will often be referred to as the two 
halves of the double helical gear. In order to facilitate 
equal load sharing between the two halves of a 
double helical gear, the general design practice is to 
allow the pinion to float axially while the position of 
the gear is fixed. 

A literature review revealed that little work has 
been published in developing procedures for 
analyzing double helical gears and that most of the 
existing design procedures are of a purely empirical 
nature making little distinction, if any, between the 
design of double helical gears and single helical 
gears. No literature could be found on the analysis 
of transmission error characteristics of double helical 
gears. Rockwood, et al. [4], presented a method for 
the analysis of double helical gears using finite 
element analysis in conjunction with the method 
proposed by Conry and Seireg [1]. However, their 
procedure for analysis does not take into account the 
axial shift of the double helical pinion. 

When analyzing double helical gears with the 
LOP program, the conventional approach has been 
to consider one half of the double helical gear and 
perform the analysis without accounting for the 
presence of the other half. Another approach has 
been to model the double helical gear as a single 
helical gear having its face width equal to the sum of 
the face widths of the two halves. It is evident that 
these approaches will supply, at best, rough 
approximations of the actual load distribution 
characteristics of double helical gears. 

The method proposed herein, simultaneously 
analyzes the two helical gears of opposite hand 
using their geometry data on an 'as is' basis and 
accounts for the effects resulting from the axial shift 
of the pinion. Hence, it is felt that the proposed 
method gives a more accurate and realistic picture of 
the load distribution and transmission error 
characteristics of double helical gears. 

FORMULATION OF THE SOLUTION 
PROCEDURE 

Double helical gears are used in applications 
where the axial thrust component of the load on 
single helical gears is excessive. Axial thrust 
reduction is achieved by enabling the load to be 
shared equally between'the two halves of the double 
helical gear, thereby causing the net axial component 
of the loads on the respective halves to be equal and 
opposite. It should be noted that equal load sharing 
between the two halves of a double helical gear does 
not imply that the load is necessarily distributed 
symmetrically over the two halves and only means 
that the net load on each of the halves is equal. 

The usual design practice to achieve equal load 
sharing between the two halves is to permit the 
pinion to float axially in its bearings [5]. There may 
be resistance to axial float resulting from the friction 
in the shaft couplings. If there is enough resistance 
to axial movement, desired equalized load sharing 
between the two halves may be impaired. Dudley [5] 
has stated that a 30° helix angle or higher is needed 
in the double helical design to ensure that the 
resistance to axial movement from the coupling is 
minimized. Fig. 1 shows the model of a double 
helical pinion where the pinion is allowed to float 
freely in the axial direction but is resisted by the axial 
stiffness of a coupling. 

In the analysis of double helical gears a variable 
that defines the amount by which the pinion shifts 
axially and a constraint equation that forces the loads 
to be equal in the two halves of the double helical 
gears is necessary. When the pinion shifts axially, it 
causes an offset in each of the gear teeth in mesh. 
The effect of this offset is to change the initial 
separation between the potential points of contact on 
the two halves of the double helical gears. If the 
pinion of the gear pair in mesh is a right hand helical 
gear, then the effect of the axial shift of the pinion to 
the right is to cause an increase in the initial 
separation between the potential points of contact on 
this gear pair and if the pinion of the gear pair in 
mesh is a left hand the reverse shift occurs. 

One must also consider the frequency with 
which the pinion changes its axial position during a 
mesh cycle. Three different approaches are used in 
this analysis of double helical gears with each 
approach differing only in the manner in which it 
treats the axial shift of the pinion. 

Thefirst approach is to allow completely free 
axial motion of the pinion, thus causing the pinion to 
have a different axial position at each position in the 
mesh cycle. This is a reasonable assumption so long 
as the factors inhibiting axial shift, namely, high 
friction of the shaft couplings and large inertias of 
the gears are not large enough to warrant their 
inclusion in the analysis 



The second approach is based upon the 
assumption that the individual or cumulative effects 
of the friction between the coupling devices and the 
inertia of the gears become significant enough to 
prevent continual motion of the pinion in the axial 
direction. This is a very logical assumption when 
mesh frequency effects are the primary 
consideration, since the forces required to axially 
move the gear inertias at this frequency are usually 
very large, resulting in negligible axial motion. This 
can be easily checked by assuming the motion to be 
sinusoidal and applying Newton's law as axial 
force, Fa = mx" = -mw2x where co is the mesh 
frequency, m is the mass of either gear, and x is the 
axial displacement. With this approach, one assumes 
that while meshing, the pinion always occupies the 
position of mean axial shift obtained from the 
analysis using the fIrst approach and continues to 
operate at that position. 

The third approach combines the fIrst and the 
second approaches with the difference being the 
incorporation of the resistance of the pinion to axial 
shift due to all factors in the form of an axial 
stiffness specified by the user. With this approach, 
for the segment of the analysis that computes the 
mean axial position, the difference in the axial thrust 
components of the two halves of the double helical 
gear at any position in the mesh cycle is set equal to 
the coupling axial force. Keeping the above 
discussion in mind, the three analysis approaches are 
detailed below: 

Analysis considering unrestrained axial motion of 
the pinion 

For this approach, Ba, the variable defming axial 
shift, can have a different value for each position in 
the mesh cycle and is not constrained by any 
considerations of the system's inability to shift freely 
in the axial direction. To ensure the existence of a 
mathematical solution of the load distribution 
problem, the following conditions must be satisfied: 

(a) Condition of compatibility: "For contact to take 
place at any point k in the zone of contact, the sum 
of the total elastic deformations of the two bodies 
and the initial separation between the bodies must be 
greater than or equal to the difference of the rigid 
body approach along the line of action and the 
change in separation at that point due to the axial 
shift of the body as a whole [1]." 

This is mathematically stated as: 

W (1) + W (2) + E > R 6 - B tan llf cos '" k k k - b a 'T 'l't 
(1) 

where, 
W k(l) is the total elastic deformation of point 

k on body 1. 

W k (2) is the total elastic deformation of point 
k on body 2. 

Ek is the initial separation at point k. 
Rb is the base radius. 

6 is the rigid body rotation along the line of 
action. 

Ba is the rigid body axial shift of the pinion. 

CPt is the transverse pressure angle of the 
gears. 

'V is the helix angle of the half of the double 
helical gear on which the point lies. 

Writing this condition for all of the points in the zone 
of contact, we have 

[S] [F] + [E] ~ [e] Rb6 + [K] Ba (2) 

[S] = NxN matrix of influence coefficients. 
N = NL + NR where NL is the number of 

the points of contact on the left half 
of the double helical gear and NR is 
the number of points of contact on 
the right half. 

[F]L = NL xl vector of the forces at left half 
contact points. 

[F]R= NRxl vector of the forces at right 
half contact points. 

[F] ~ [! : l:] is ilie Nx !force vector. 

[K] = Nxl vector containing tan 'I' cos ~t 

in its fIrst NL rows and tan 'I' cos ~t 
in its next NR rows. 

[E] = N x I vector of initial separations. 

[e] = N x 1 vector of ones. 

(b) Condition of equilibrium: This condition 
warrants that the total moment about the axis of 
rotation of the forces F(k) acting along the line of 
action is equal to the applied torque, T. 
Mathematically, this condition specifies that: 

(3) 

(c) Condition for contact: This condition states that 
the two bodies must be in contact at a point for a 
pressure to exist at that point. Rewriting equation (I) 
as an equality constraint by introducing a slack 
variable Y k' we have: 

Wk (1) + W k(2) + Ek - Rb9 + c\tan'l' COS~t - Yk ;;:: 0 



where Y" ~ 0 

The condition for contact implies in 
mathematical terms that at any point k in the zone of 
contact. 

(4) 

If Y k = 0 , then fOe) ~ 0 

IfY
k 

> 0, then fOe) = 0 

(d) Condition for good design: This condition 
requires that the net force carried by the two halves 
of the double helical gear be equal. This is . 
mathematically expressed as: 

In computing the elastic defonnations, we 
assume that a force acting at any point of any tooth 
on either gear pair in the double helical arrangement 
will influence the shaft bending and torsional 
deflections as well as bearing deflections at any 
other point on either gear pair. However, the same 
force will influence the tooth bending at another 
point only if that other point is on the same tooth of 
the same gear pair and within the range of influence . 
of the applied load. Thus, the influence coefficient 
matrix for shaft and bearing defonnations will be 
well filled with respect to the influence coefficient 
matrix for tooth bending effects. The influence 
coefficient matrix for Hertzian deformation will be a 
diagonal matrix. Thus, the formulation of the load 
distribution problem may be stated as: 

Find the values of (F, y, e, 0a) subject to the 
following constraints: 

-[S] [F] + Rb [e] e + [K] 0a + [Y] = [E] 

[F]T [e] Rb = T 

either fOe) = 0 or Y k = 0 where, 

[Y] = N x 1 vector containing the slack 
variables. and all other variables are as 
defined previously. 

The problem thus stated is solved using the 
Simplex type procedure of Vijayakar, et al. [3], to 
obtain the solution for the load distribution problem. 

Analysis considering the pinion to operate at the 
position of mean axial shift 

From the solution of the problem as formulated 
for unrestrained axial motion of the pinion, the 

, amount of axial shift of the pinion (Oa) for each mesh 
position is obtained. However, as stated before, 
when the friction and axial stiffness of the shaft 
'couplings are high and/or the inertia of the pinion is 
.large, it is likely that the pinion will reach a mean 
'axial position and will remain in this position. Thus 
the load distribution problem needs to be analyzed 
one more time, now with the position of the pinion 
fixed at its mean axial position "om" (shown in Fig. 

3). om is obtained from the expression: 
N 

I,[S.JI 
8 =..:.;;1-;.:,..1_-

m N 
where N is the number of positions in the 
mesh cycle. 

Hence, ° a is no longer a variable in the 
equations. With the removal of one variable, one 
must also remove the associated constraint equation 
that requires forces the forces carried by each of the 
two halves of the gear to be equal. Now, the average 
loads on the two halves are equal for one mesh 
cycle. 

. 
The total initial separation between the potential 

points of contact is computed by adding the change 
in initial separations associated with the mean axial 
position of the pinion to the initial separations 
computed from the geometry of the gears. The 
analysis is then carried out by solving for (F, e, Y) 
from the following constraint equations: 

-[S] [F] + ~ [e] e + [y] = [EN] 

[F]T [e] Rb = T where 

[EN] = [E] - Om [K] ° = the mean axial shift of the m 
pinion as computed previously. 

Analysis considering the resistance to axial motion 
of the pinion 

As mentioned earlier, this approach is a 
combination of the first two approaches with a 
change that the resistance to axial motion of the 
pinion is included in the form of the specification of 
the coupling axial stiffness. Referring to Fig. I, the 
resistance to axial motion of the pinion is 
incorporated into the analysis as follows: 

The 'condition for good design' which is 
specified in the first approach as: 

now becomes: 



where K is the axial stiffness specified by the user. 
a 

All other tenns are as defined previously, noting that 
multiplying a force acting in the transverse plane in 
the direction of the line of action at a point on the 
tooth of a gear by the factor "cos CPt tan 'V .. will give 
the component of that force in the direction of the 
axis of the gears. 

This implies that in the limiting case where the 
axial stiffness tends to zero, the results from this 
analysis will be the same as obtained from the first 
approach. In the case where the axial stiffness 
becomes large, the difference between the load 
carried by the left and the right halves of the double 
helical gears will increase, as shown in equation 5. 
This is in accordance with what one expects to occur 
in the physical system, where large resistance to 
axial motion limits the amount of axial shift and 
thereby impairs equal load sharing between the two 
halves of the double helical gear. 

Thus, in this approach, the amount of axial shift 
for each position in the mesh cycle is computed by 
solving for (F, e, 0 , Y) from the following 

8 

constraint equations: 

-[S] [F] + ~ [e] e + [K] 0
8 

+ [Y] = [E] 

[FlT [e] ~ = T 

L[F]L coS4>t tan'l' = L[F]Rcos4>t tan'V + K8 08 

From the axial shift obtained for the various 
positions in the mesh cycle, one can compute the 
mean axial position at which the pinion operates. 
Having obtained the mean axial position, the 
remainder of the analysis is carried out exactly as 
detailed in the second approach, giving the predicted 
load distribution and transmission error 
characteristics of the double helical gear pair. 

RESULTS 

The cases presented use the same double helical 
gear geometry shown in Tabled 1. However, 
variations exist in the different cases with respect to 
the non-gear geometry parameters of the system 
such as the inclusion or non-inclusion of the effects 
due to shaft deflections, axial stiffnesses of the 
couplings, and misalignment between the bearings. 
Cases were also run for equivalent single helical 
gears having face widths of 50 mm and 100 mm. 
These cases will be discussed without graphical 
outputs for brevity. (The double helical gear had 50 
mm face width per half). 

The results presented are classified into three 
different cases that are detailed below: 

Case A: Study of transmission error considering the 
effects of tooth deflection only 

The objective of this case study was to 
detennine the difference in the transmission error 
characteristics of double helical gears and single 
helical gears when considering the effects of tooth 
deflection alone, i.e., when all shaft and deflections 
are excluded from the' analysis. 

The transmission error curve obtained for the 
double helical gear is shown in Fig. 2. The 
equivalent 50 mm face width single helical gear had 
identical transmission error characteristics but the 
equivalent 100 mm face width single helical gear 
differed in its behavior with its peak-to-peak 
transmission error (PPTE) value being only about 
40% of that of the double helical gear as shown in 
Table 2. This occurs even though the double helical 
gear has twice the total contact ratio as the single 
helical gear with the 50 mm face width and the same 
contact ratio as the one with 100 rom face width. 
This is because the manner in which the load sharing 
between the teeth changes in each mesh cycle is the 
same for both the double helical gear and the single 
helical gear with 50 mm face width. When one tooth 
is leaving contact on one half of the double helical 
gear, a corresponding tooth is also leaving contact 
on the other half and thus the increased contact ratio 
of the double helical gears does not result in more 
gradual changes in the amount of load being carried 
by individual teeth. On the other hand the single 
helical gear with 100 mm face width has the full 
benefit of a more gradual change in the load being 
carried by it, which results in smaller mesh stiffness 
variation and lower transmission errors. Therefore, 
from a purely transmission error point of view, it is 
more advantageous to use a single helical gear with 
the same net face width than the double helical gear. 

Further studies with the same gear sets as 
above, while including shaft bending, shaft torsion 
and bearing deflections showed varied results for 
each gear set indicating that it is not prudent to 
analyze a double helical gear by analyzing equivalent 
single helical gear model. 

Case B: Study of the results from the different 
double helical gear models 

Earlier it was discussed that there could be 
three different approaches for dealing with the 
phenomenon of the axial shifting of the double 
helical pinion in the analysis. In this case study the 
results obtained from the three different approaches 
are discussed. Also discussed is the result obtained 
when the double helical pinion is allowed no axial 
shift. 

Using the first approach, the axial position of 
the pinion relative to the no load position is evaluated 
at 21 different positions in the mesh cycle. This 
gives the axial motion curve shown in Fig. 3. Using 
this data, the mean axial position of the pinion 
relative to the no load position is computed to be 



10.9 Il. m. which is used to perfonn the analysis 
using the second approach. 

The next step in this case study is to determine 
the magnitude of the axial stiffness which causes a 
substantial reduction in the magnitude of the mean 
axial shift. Using the third approach the mean axial 
position of the pinion relative to its no load position 
was detennined at values of axial stiffness varying 
from 175 N/mm to 175xIQ6 N/mm. The results are 
plotted in Fig. 4 where it can' be seen that the change 
in the magnitude of the mean axial shift relative to 
the no load position is small for axial stiffnesses of 
the order of magnitude less than or equal to typical 
values of bearing stiffness (200 x 103 N/mm) and 
decreases substantially for very large values of the 
axial stiffness. This implies that the axial shifting of 
the pinion will not be affected by typical values of 
the coupling axial stiffness which are usually at least 
an order of magnitude less than bearing stiffnesses. 
An axial stiffness of 350 x 103 N/mm gives a change 
in axial position of the pinion relative to its no load 
position of 6.6 J.Lm, a value which is used in the 
subsequent analysis using the third approach. 

The transmission error curves of the double 
helical gear obtained from the analysis using the 
three different approaches were almost identical. 
Table 3 shows the PPTE value for each case. This 
data leads to the conclusion that the amount of axial 
shift has little effect upon the transmission error 
characteristics of the double helical gear. 

The load distribution along the lines of contact 
for each case was also studied (sample output shown 
in Fig. 5). It was seen that while the load 
distribution pattern along the individual lines of 
contact on the corresponding halves of the double 
helical gear are essentially the same for each 
approach, there remains a significant difference in 
the amount of load being carried by each half. In the 
ideal case, where the pinion is allowed to shift freely 
in the axial direction, the load being carried by each 
half of the double helical gear is identical, as 
expected. In the second approach the pinion is 
constrained to operate at its mean axial position 
and, hence, there arises a slight difference in the 
amount of load being carried by each half of the 
double helical gear. In the third approach, where the 
amount of axial shift is further reduced due to the 
axial stiffness prescribed by the user, the difference 
in the load carried by each half is larger. In the final 
case where no axial shift of the pinion is allowed, 
the difference in the loads being carried by each half 
becomes significant (30% difference between sides). 

Case C: Study of the effects of stagger of the teeth 

Sometimes double helical gear teeth of the two 
halves are staggered relative to one another. It is the 
objective of this case study to ascertain the benefits 

of staggering the teeth with respect to the 
minimization of transmission error. 

In the computer program, the user is asked to 
input the stagger between the teeth in the form of a 
percentage stagger which is defined as the amount of 
sta1?g~r as a percentage of the base pitch. Hence 
defmmg a 50% stagger would imply that when 
viewed in the transverse plane, a tooth of one half of 
the double helical gear would be placed 
symmetrically between two teeth of the other half. 

The double helical gear used in the previous 
case studies was analyzed for 10%, 20%, 30%, 
40% and 50% stagger between the teeth while 
considering only the tooth deflection effects in the 
analysis. Percent stagger above 50% gives mirror 
image results to stagger below 50%. It was 
ob~rved that with an appropriate stagger, one could 
achieve more than 50% reduction in the PPTE of the 
double helical gear (refer to Table 4). The variation 
of the to~ length of contact in the mesh cycle was 
also studied for each case. The transmission error 
curve for the.ca.se with 20% stagger is shown in Fig. 
~ and the vanatIon of the tota1length of contact lines 
10 th~ mesh cycle for the same case is shown in Fig. 
7. It IS seen that the least PPTE was obtained for the 
case where there is 30% stagger of the teeth where 
the variation of the total contact length in the mesh 
cycle takes place more smoothly than in any other 
case. The greatest PPm is seen in the case with no 
stagger where the variation of the total contact length 
in the mesh cycle is also the least smooth. It can 
!hereby. be concluded that by staggering the teeth, it 
IS pOSSIble to achieve better transmission error 
characteristi<:s ~or ~e double helical gear by causing 
smoother vanatton m the total length of contact in the 
mesh cycle. However, one must keep in mind that 
wit~ the inclusion of shaft effects in the analysis, the 
optImum amount of stagger which provides the best 
reduction in the PPTE may differ. 

SUMMARY 

T~is paper has presented a procedure for 
analyzmg the load distribution and transmission 
error of double helical gears for several situations. It 
was found that the analysis of single helical cases are 
not adequate for double helical gears and that the 
introduction of stagger between the teeth of each half 
can reduce transmission error. 
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Fig. 1 Double Helical Gear Model Incorporating Axial Stiffness 
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Fig. 2 Transmission Error for the Double Helical Gear Pair 
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Table 1 Gear Geometry 

Pinion Gear 
Number of Teeth 13 127 

Outside Diameter 75.2mm 615.3mm 

Root Diameter 53.7mm 594mm 

Center Distance 338mm 

Nonnal Pressure Angle 20° 

Module 4.11mm 

Helix Angle 31° 
Face Width 50.8mm 

, 
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Table 2 Transmission Error Comparison 
for Different Gear Types 

PPTE (Jl m) 

Double Helical Gear 1.05 
(50 mm FW /half) 

Single Helical Gear 1.05 
(50mmFW) 

Single Helical Gear 
.42 ( 100mmFW) 

[10~========----------~ 
'-' 

~ .5 

!E .2 · 
.c 
CI) 

~ .1 

~ .05 
a 
v 
~ 1.0 

Axial Stiffness (N/m) 

Table 3 Transmission Error Comparisons 
for Different Approaches 

Analytical Procedure PPTE (Jl m) 

First Approach 3.302 

Second Approach 3.310 

Third Approach 3.297 

No Axial Shift 3.276 



Fig. 5 Load Distribution Along the Lines of Contact 
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Fig. 6. Transmission Error over One Mesh Cycle for 50% Stagger 
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Fig. 7 Variation of Total Contact Line Length Over One Mesh Cycle. 



Table 4 Transmission Error at Different Staggers 

% PPTE Amplitude of the hannonics of the 

Stagger 
Fourier series of the TE cUIVe( J.L m ) 

(micron) Hann. #1 Hann#2 Hann#3 

0% 1.05 .154 .391 .051 

10% .811 .149 .280 .026 

20% .578 .129 .108 .171 

30% .413 .095 .106 .046 
40% .719 .050 .280 .039 

50% .712 .001 . . 347 .003 


